Estimating the number of ancestral lineages using a maximum-likelihood method based on rejection sampling.

نویسندگان

  • Michael G B Blum
  • Noah A Rosenberg
چکیده

Estimating the number of ancestral lineages of a sample of DNA sequences at time t in the past can be viewed as a variation on the problem of estimating the time to the most recent common ancestor. To estimate the number of ancestral lineages, we develop a maximum-likelihood approach that takes advantage of a prior model of population demography, in addition to the molecular data summarized by the pattern of polymorphic sites. The method relies on a rejection sampling algorithm that is introduced for simulating conditional coalescent trees given a fixed number of ancestral lineages at time t. Computer simulations show that the number of ancestral lineages can be estimated accurately, provided that the number of mutations that occurred since time t is sufficiently large. The method is applied to 986 present-day human sequences located in hypervariable region 1 of the mitochondrion to estimate the number of ancestral lineages of modern humans at the time of potential admixture with the Neanderthal population. Our estimates support a view that the proportion of the modern population consisting of Neanderthal contributions must be relatively small, less than approximately 5%, if the admixture happened as recently as 30,000 years ago.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

Analysis of a Problem Using Various Visions

 In this paper an applied problem, where the response of interest is the number of success in a specific experiment, is considered and by various visions is studied. The effects of outlier values of response on results of a regression analysis are so important to be studied. For this reason, using diagnostic methods, outlier response values are recognized. It is shown that use of arc-sine ...

متن کامل

Maximum likelihood estimation of ancestral codon usage bias parameters in Drosophila.

We present a likelihood method for estimating codon usage bias parameters along the lineages of a phylogeny. The method is an extension of the classical codon-based models used for estimating dN/dS ratios along the lineages of a phylogeny. However, we add one extra parameter for each lineage: the selection coefficient for optimal codon usage (S), allowing joint maximum likelihood estimation of ...

متن کامل

Estimating the preservation value of Natural resources by using individual’s willingness to pay (Case study: Dena protected area)

The logit regression model was used to measure the willingness to pay, and the parameters of this model were estimated based on maximum likelihood (probability) method. For this purpose, 377 double-duplex questionnaires were completed by random sampling method in Kohgiluyeh va Boyer Ahmad provinces. Based on the results, over 68.3% of respondents, they expressed their desire to participate in t...

متن کامل

Evaluation of estimation methods for parameters of the probability functions in tree diameter distribution modeling

One of the most commonly used statistical models for characterizing the variations of tree diameter at breast height is Weibull distribution. The usual approach for estimating parameters of a statistical model is the maximum likelihood estimation (likelihood method). Usually, this works based on iterative algorithms such as Newton-Raphson. However, the efficiency of the likelihood method is not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 176 3  شماره 

صفحات  -

تاریخ انتشار 2007